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In a two-qubit system the coupling with an environment considerably affects the entanglement dynamics,
usually leads to the loss of entanglement within a finite time. Since entanglement is a key feature in the
application of such systems to quantum information processing, it is highly desirable to find a way to prolong-
ing its lifetime. We present a simple model of an interacting two-qubit system in the presence of a thermal
Markovian environment. The qubits are modeled as interacting spin-1 /2 particles in a magnetic field and the
environment is limited to inducing single spin-flip events. A simple scheme allows us to calculate the relax-
ation rates for all processes. We show that the relaxation dynamics of the most entangled state exhibit critical
slowing down as a function of the magnetic field, where the relaxation rate changes from exponentially small
values to finite values in the zero-temperature limit. We study the effect of temperature and magnetic field on
all the other relaxation rates and find that they exhibit unusual properties, such as nonmonotonic dependence
on temperature and a discontinuity as a function of magnetic field. In addition, a simple scheme to include
non-Markovian effects is presented and applied to the two-qubit model. We find that the relaxation rates exhibit
a sharp, cusplike resonant structure as a function of the environment memory time, and that for long memory
times all the different relaxation rates merge into a single one.
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I. INTRODUCTION

In consideration of the application of quantum informa-
tion processing, two main ingredients must be considered—
entanglement and decoherence. While entanglement, or non-
local coherence, plays a key role in qubit operations �1�,
decoherence sets the limit to which such operations may be
performed �2�. Decoherence may result from the interaction
of the quantum system with a dissipative environment �3�,
dramatically affecting the dynamics of the quantum system,
and its entanglement properties. Specifically, it was theoreti-
cally predicted �4–6� that a �noninteracting� two-qubit sys-
tem can be completely disentangled in a finite time, a phe-
nomenon dubbed “entanglement sudden death.” This was
followed by a plethora of theoretical studies of this phenom-
enon in various situations, most of them treating noninteract-
ing qubits �i.e., a pair of qubits which interact with each
other only in the mediation of the environment�, with either a
Markovian or non-Markovian environment �7–17�. From the
experimental side, direct measurements of entanglement
have been performed �18,19�, and the entanglement sudden
death was observed �20�.

The loss of entanglement seems to be a generic feature of
two-qubit systems �6�. Our goal is to study a simple system
where entanglement sudden death may be avoided. For this
aim we study a simple model of an interacting two-qubit
system in the presence of a thermal dissipative bath. We
model the qubits as interacting spin-1

2 particles in a magnetic
field �21� and use the Born-Markov approximation for the
system-environment coupling. The environment is assumed
to be Ohmic and induce thermal transitions, and it allows for
only single spin-flip events �in similarity to spin-boson mod-
els �22��. We calculate analytically the full dynamics of this
system, with emphasis given to the different relaxation rates.
We point out here that we use the term “relaxation rates”
loosely, to describe the time-scales of both processes which

include energy change �relaxation� and only coherence loss
�decoherence�. Both types of processes are inherently present
in our calculation scheme. We show that, although the cou-
pling with the environment is characterized by a single re-
laxation rate, different relaxation rates emerge for different
coherent states. We study the effect of temperature and mag-
netic field on the different relaxation rates and find that they
may be nonmonotonic functions of temperature.

As the main results of this paper, we demonstrate that as a
function of the magnetic field the relaxation rate of the
highly entangled states abruptly changes from being finite as
the temperature vanishes to being exponentially small. This
occurs when one of the states of the entangled pair is in a
metastable state, and indicates that with a proper tuning of
parameters the entanglement may survive for very long times
even in the presence of a dissipative environment. We dem-
onstrate the long life of entanglement by calculating the con-
currence of a specific entangled state, and show that applica-
tion of a transverse magnetic field destroys this effect.

Finally, we devise a simple way to account for non-
Markovian effects when calculating relaxation rates. Study-
ing the relaxation rates as a function of the environment
memory time, we find that some relaxation rates exhibit a
nonmonotonic dependence on the memory time, with a cusp-
like resonance. For long memory times, the different relax-
ation rates merge into a single rate.

II. METHOD

Let us introduce our method for calculating the relaxation
times. We consider a quantum system, characterized by a
time-independent Hamiltonian H with N energy levels Ek,
k=1,2 , . . . ,N. The system dynamics are given by the evolu-
tion of the density matrix ��t�=�kk��kk��t��k��k��, where �k�
are the eigenfunctions of the Hamiltonian �23�. For the above
choice of Hamiltonian, in the Markovian approximation the
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evolution of the density matrix is given by a quantum master
equation �24� ��=1�,

�̇�t� = − i�H,�� + L� , �1�

where L� is a superoperator describing the dissipative dy-
namics. It is commonly taken in the Lindblad form �25�

L� = �
i
	−

1

2

Vi

†Vi,�� + Vi�Vi
†� �2�

�where 
·,·� are the anticommutation relations�. This form is
the simplest form for the quantum master equation that de-
fines the evolution of the density matrix, while conserving
both the Hermiticity of the density matrix, its trace �equal to
unity�, and ensuring its positivity �26�. The V operators de-
fine the different relaxation processes induced by the envi-
ronment.

We now follow Ref. �27� and cast the density matrix into
a vector form, defining �� = ��11,�22, . . . ,�NN ,
Re �12, Im �12, . . . ,Re �1N , Im �1N , . . . �. Here the first N ele-
ments account for occupation probabilities and the other el-
ements describe coherence between the states in the statisti-
cal mixture. It is now a matter of rearranging the master

equation into a form ���t�=M̂���t�, where now M̂ is a matrix
of dimension N2 which includes both the Hamiltonian and
the dissipative part of the evolution.

Due to the semigroup properties of the Lindblad equation,

�at least� one of the eigenvalues of M̂ is exactly zero �27�.
The eigenvector corresponding to this eigenvalue is the
steady state of the system, i.e., the limit limt→� ��t�. The
other eigenvalues may have an imaginary part, but all of
them have a negative real part, which corresponds to the
relaxation rate of the corresponding eigenvector. Thus, by

calculating the eigenvalues of M̂ one obtains the relaxation
rates for all possible processes. For the most general initial

condition, the smallest nonvanishing eigenvalue of M̂ �which
we call �1� represents the longest relaxation rate.

Two remarks are in order here. The first is that it is not

surprising that the real parts of the eigenvalues of M̂ are

negative. This stems from the fact that M̂ is only a recasting
of the original Lindblad operator, the positivity of which is
ensured by the Lindblad theorem �25,26�. The second is that
in our calculations we always obtain a single steady state

�i.e., a single eigenvalue of M̂ that is equal to zero�. Indeed,
in the general case there may be several steady states, and in
general there is no a priori way of knowing how many
steady states exist. However, our simple model gives a physi-
cally transparent reason for this. Consider our system at zero
temperature. Then, the relaxation operators simply transfer
high-energy states into lower-energy states, with the inevi-
table outcome that the system will end up in the ground state.
Since the ground state is nondegenerate in our case �due to
the magnetic field�, there is a unique steady-state solution.
Applying a finite temperature simply generates a solution
which is a statistical combination of the ground state and the
exited states �with the appropriate Bolzmann weights�, but
still, since there is only a single ground state, this “thermo-
dynamic” state is unique.

III. APPLICATION TO THE TWO-QUBIT SYSTEM

A. Two-qubit system in a perpendicular field

Next we consider the application of the above method to
our model two-qubit system. The Hamiltonian, with Ising
interaction, can be written as

H = − 2Jsz
�1�sz

�2� + B · �
i=1,2

s�i�, �3�

where s�i� are the two qubit levels �i.e., spin= 1
2 particles�,

J�0 describes the interactions, and B is the external mag-
netic field. This choice of Hamiltonian is not only convenient
�being very simple�, but also represents several suggestions
for realistic, spin-based quantum computers �28,29�.

For simplicity we start with magnetic field only in the z
direction, i.e., B=Bz with B�0. Choosing as a basis the four
states �↑↑�, �↑↓�, �↓↑�, �↓↓� �which we number from 1 to 4,
respectively�, the Hamiltonian can be written �up to a con-
stant energy shift� as

H =

− J − B 0 0 0

0 0 0 0

0 0 0 0

0 0 0 − J + B
� . �4�

In order to account for the environment, the spins are
coupled to one that induces spin-flip processes, represented
by the V operators in Eq. �2�. Here we make two assump-
tions, namely, �i� the spins are flipped one at a time �i.e.,
there is no direct relaxation from the �↑↑� state to the �↓↓�
state, etc.� and �ii� the relaxation rate between two states is
proportional to the Boltzmann factor of the corresponding
energy difference between the states �24� �these two assump-
tions on the form of the V operators reflect the properties of
the environment as described in the Introduction�. For ex-
ample, the relaxation operator from �↑↑� to �↑↓� �taking kB
=1� is �30�

V12 = �12
1/2�↑↓��↑↑� ,

�12 =
�0

cosh	 J + B

2T
� exp	−

J + B

2T
� , �5�

where �0 is some typical relaxation rate which represents the
strength of the qubit-environment coupling. For the reverse
process the relaxation operator is

V21 = �21
1/2�↑↑��↑↓� ,

�21 =
�0

cosh	 J + B

2T
� exp	 J + B

2T
� , �6�

so that the condition of detailed balance is maintained, i.e.,
�12 /�21=exp�−�E12 /T�. Note that one can normalize the
transition rate in different ways and still maintain detailed
balance. Here we choose a normalization that keeps all re-
laxation rates finite �even at T→0� and preserves the B→
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−B symmetry �i.e., does not depend on the gauge of the
Hamiltonian�. However, all the qualitative results presented
in this paper equally apply for a different choice of the nor-
malization of the V operators.

Once the form of the V operators is specified, it is now a

matter of algebraic manipulation to obtain the M̂ matrix and

its eigenvalues and eigenvectors �the full form of M̂ is given
in the Appendix�. For the steady state we find

���� = Z−1��↑↑��↑↑� + e−2B/T�↓↓��↓↓� + e−�J+B�/T��↑↓��↑↓�

+ �↓↑��↓↑��� , �7�

with Z being the partition function of the system, which re-
sults in a pure �↑↑� state �which is the ground state of the
Hamiltonian� in the limit of T→0.

For the above example, all the eigenvalues may be calcu-
lated analytically. For the lowest rate �i.e., minus the real part
of the eigenvalues� we find

�1 = 1 −
sinh�J/T�

cosh�B/T� + cosh�J/T�
, �8�

which is three-fold degenerate. Two states contain �14 and
�41 �i.e., a coherence between �↑↑� and �↓↓��, and the third is
a mixture of all the diagonal elements �11, �22, �33, and �44.
Inspection of �1 in the limit T→0 shows that

lim
T→0

�1 = � 0, B � J ,

�0/2, B = J ,

�0, B � J .
� �9�

This means that for B�J the relaxation time from the coher-
ent �14 state diverges, i.e., the system never reaches its dis-
entangled ground state, and the latter is thus the only nonde-
generate steady state, as we have previously discussed.
However, for B	J it relaxes to the ground state on a time
scale 
��0

−1. This can be easily explained from the follow-
ing considerations. Note that the �↓↓� state can relax only into
one of the degenerate middle states, �↑↓� or �↓↑�. For 0�B
�J, its energy is negative �but higher than the ground state
energy�, and therefore the relaxation rate is exponentially
small. Put differently, the �↓↓� state is a metastable state,
escape from which requires an exponentially rare correlated
event. For B�J, however, the energy of �↓↓� is no longer
negative, and hence it can relax into the ground state by a
cascade relaxation through the middle states.

While all the other eigenvalues are available analytically,
writing them in full form is cumbersome, and thus we
present them graphically. In Fig. 1 we plot the relaxation
rates for the different states as a function of temperature for
magnetic field B /J=0.9. In Fig. 1�a� we plot a wide tempera-
ture range, and we zoom in on the low-temperature range in
Fig. 1�b�. For each relaxation rate the corresponding ele-
ments of the density matrix are marked. Figure 1 shows two
interesting features: �i� the relaxation rates are nonmonotonic
in temperature, and �ii� they break into groups, with only two
possible time scales ��0

−1 and 2�0
−1� at T→0.

For comparison, in Fig. 2 we plot the same for a magnetic
field B /J=1.1. We now find that the relaxation rates are bro-
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FIG. 1. �Color online� Different relaxation rates �at B /J=0.9� as
a function of temperature �a� for a large temperature scale, and �b�
zoomed in on the low-temperature regime. For each rate, the corre-
sponding density matrix element is noted.
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FIG. 2. �Color online� Same as in Fig. 1 but for B /J=1.1.
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ken into four groups, i.e., additional time scales appear. In-
terestingly, only the �23 state preserves its T→0 limit as the
B=J point is crossed, while all other time scales exhibit a
discontinuous change.

B. Concurrence

In order to demonstrate the above effect on the entangle-
ment of the two-qubit system, we calculate the concurrence,
which is a direct measure of the entanglement �31�. For the
two-qubit system �in the basis chosen above� it is defined as
C=max�0,�e1−�e2−�e3−�e4�, where ei are the eigenvalues

of the matrix �̂, defined by �̂=��sy
�1�

� sy
�2���*�sy

�1�
� sy

�2��.
Clearly, the dynamics of the concurrence depend on the ini-
tial condition. For this example we choose the initial density
matrix �11�

��0� =

�11 0 0 �14

0 �22 0 0

0 0 �33 0

�41 0 0 �44

� , �10�

for which one can easily calculate the concurrence C�t�
=max�0,2���14�41−��22�33��. The diagonal elements are
given by Eq. �7� and �14=�41=1 /2. By making this choice
we start with a highly entangled state �C�1�, but the dy-
namics are very easy to calculate as the diagonal elements do
not change at all, and the off-diagonal ones decay with the
rate given by Eq. �9�. We point out that one can start with
any initial diagonal elements and obtain results similar to
those presented below, since the diagonal elements quickly
relax to the steady state �Eq. �7�� and do not contribute to the
concurrence time evolution.

In Fig. 3 we plot the concurrence as a function of tem-
perature and time for magnetic field values B /J=0.9 �upper
panel� and B /J=1.1 �lower panel�. The mesh corresponds to
finite C, while in the blank regions C=0. For B�J we find
that entanglement sudden death is present at all temperatures.
However, for B�J it becomes exponentially suppressed at
lower temperatures: the concurrence remains practically fi-
nite for all times.

In order to understand this behavior, we note that the for-
mula for the concurrence describes a competition between
the off-diagonal elements of the density matrix, which con-
tribute to the entanglement, and the diagonal elements,
which disentangle the state. At strictly T=0, the diagonal
elements vanish but the off-diagonals elements survive in-
definitely, giving rise to an entangled state. For very low
temperature, while in the strict t→� limit the system be-
comes disentangled, this time is exponentially long.

C. Transverse field

Let us consider the effect of an additional transverse field
B=Bxx �the results are identical to those for an additional
field in the y direction�. A transverse field can represent ei-
ther an inherent interaction between the two qubit states, or
an actual field �in the qubit relevant Hilbert space�, which is
used to perform quantum operations. Since both these ingre-

dients appear in any implementation of a physical qubit, it is
important to study their effect on the relaxation time scales.

We thus repeat the above procedure of constructing and

diagonalizing the M̂ matrix with an additional term. In Fig. 4
we plot the inverse relaxation rates at T=0, B=0.9 as a func-
tion of Bx. It is found that the infinite relaxation time be-
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comes finite �i.e., there is no longer a metastable state� and
that the degeneracy is lifted. This means that applying a
transverse field may give rise to entanglement sudden death.
Interestingly, one can see that the time scales are not mono-
tonic functions of Bx.

The conclusion arising from the above calculation is two-
fold: �i� in a realistic qubit, coupling between the qubit states
should be maximally inhibited, to allow for longer entangle-
ment lifetime, and �ii� one has to take into account the fact
that performing quantum operations on the qubits will result
in faster decay of entanglement.

IV. NON-MARKOVIAN EFFECTS

In the Markovian approximation, the evolution of the sys-
tem does not depend on its history. This approximation ap-
plies when the correlation times of the thermal bath are much
smaller than any time scale associated with the system under
consideration. However, there are cases where the bath reacts
to the dynamics of the system over a certain memory time

M, and the Markov approximation is thus not valid. In such
instances, the evolution of the system would depend on its
history �26�. Non-Markovian effects on the entanglement dy-
namics have been extensively studied in recent years
�12–14�.

In order to include non-Markovian effects, one has to in-
clude the history of the system. In the simplest approxima-
tion �26�, this adds up to a form of the quantum master
equation

�̇�t� = − i�H,�� + �
0

t

K�t − t��L��t��dt�, �11�

where the memory kernel K�t� defines the response of the
bath to the history of the system. Note that not every form of
the memory kernel is possible, as positivity of the density
matrix may be lost �32�.

One can now repeat the procedure described above, and
rewrite Eq. �11� in a vector form, which yields the integro-
differential vector equation

��̇�t� = �
0

t

M̂�t − t�����t��dt�. �12�

The time dependence of the M̂ matrix is such that for ele-
ments derived from the Lindblad superoperator one attaches
the kernel K�t− t��, and for the elements derived from the
Hamiltonian one attaches a � function, ��t− t��. One can now
Laplace-transform Eq. �12� and obtain an algebraic vector

equation s��s�−��0�=M̂�s���s�, where s is the �complex�
Laplace variable. Note that the Laplace transform M̂�s� has a
simple form, as the Hamiltonian elements are multiplied by
unity �which is the transform for the � function� and the
Lindbladian elements are multiplied by the Laplace trans-
form of K�t�. The formal solution of the above equation is
thus given by

��t� = �
−i�

i�

est�sI − M̂�s��−1��0�ds , �13�

where I is the unit matrix. From Eq. �13� it can be seen that

if the secular equation det�sI−M̂�s�� has solutions, the real
part of these solutions defines a relaxation time scale �via a
Cauchy-like integration over poles�. One can thus obtain the
relaxation times from a numerical solution of the secular
equation, without the need to solve the full non-Markovian
dynamics.

In the simplest approximation �32–35� the memory kernel
is given by an exponential form,

K�t� = 
M
−1 exp�− �t�/
M� , �14�

where 
M is the memory time. The Laplace transform is thus
K�s�=1 /
Ms+1, which yields a polynomial secular equation.
Note that in the limit 
M →0 the Markovian limit is exactly
obtained. We have solved this equation numerically, and
found that it always has N−1 solutions with negative real
part and a single solution with s=0, corresponding to the
steady state. This means that, for an exponential memory
kernel, one can identify different processes that have differ-
ent relaxation rates. We note that, if one takes a more com-
plicated memory kernel �say a power law�, then the secular
equation becomes transcendental, with no simple poles. In
that kind of environment, one cannot simply attach different
time scales to different processes, and the full dynamics of
the system must be calculated �36�.

The above scheme can now be applied to our two-qubit
model. In Fig. 5 the inverse time scales are plotted as func-
tions of the memory time 
M for B /J=0.9,1.1. We find that
the time scales have a resonant structure as a function of 
M,
and in fact exhibit a cusp at the resonance. In addition, at
relatively large 
M, all the different time scales merge into a
single group, i.e., there is no longer a separation of the time
scale for the relaxation processes of different coherent states.

The long-memory-time behavior may be understood by
the fact that in this case the bath memory dominates the
relaxation processes, giving rise to a single time scale. The
longer the memory time, the more weight is given in the
relaxation process to states far from the steady state, and
hence the relaxation rate diminishes. However, the rise in
relaxation rate at small memory times is a surprising effect,
which comes about due to the complex nature of the inter-
action between the two-qubit system and the environment.
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as a function of the memory time 
M. Note the resonant structure of
the time scales, and the bunching of different time scales at large 
.

RELAXATION TIMES IN AN OPEN INTERACTING TWO-… PHYSICAL REVIEW A 79, 012328 �2009�

012328-5



It will be interesting to examine the effect of non-
Markovian dynamics on the entanglement �i.e., on the long-
time behavior of the concurrence�. For instance, the authors
of Ref. �12� find that, in the absence of interaction between
the qubits, the concurrence may be revived due to the non-
Markovian bath. Unfortunately, the formalism presented in
this section does not allow for an evaluation of the
asymptotic behavior of the concurrence, and a full solution
of the integro-differential master equation is needed. How-
ever, from Fig. 5 it is clear that all the relaxation rates, and
specifically that associated with relaxation of �14, decrease
with increasing 
M. This means that the concurrence, which
in our system is directly associated with �14, should persist
for longer times, i.e., non-Markovian effects contribute to the
entanglement.

V. SUMMARY

In this paper we have studied the relaxation dynamics of a
model interacting two-qubit system in the presence of an
Ohmic thermal environment. The qubits were modeled as
spin-1

2 particles with spin-spin coupling and in the presence
of a magnetic field. The environment was limited to induce
only single spin-flip events. Within this model we analyti-
cally calculated the relaxation rates of different processes.
Our main result is that disentanglement may be critically
slowed down in the T→0 limit by varying the magnetic
field, and entanglement sudden death may be completely
avoided �or at least exponentially suppressed for low tem-
peratures�. This was explicitly shown by calculating the con-
currence dynamics of a highly entangled state for different
magnetic fields. We have also shown that a transverse mag-
netic field may destroy this effect.

In addition, we have introduced a simple way to include
non-Markovian effects in the calculation of the relaxation
rates. We have shown that the different relaxation rates ex-

hibit an interesting nonmonotonic dependence on the envi-
ronment memory time, with a cusp-like resonance. For long
memory times, we have found that the different time scales
merge into a single time scale.

In order to experimentally verify the results presented
here, one needs an experiment with a well-controlled two-
qubit system, where the energy levels can be controlled. A
promising candidate is a system composed of two coupled
two-quantum-dot qubits �37�, where the qubit levels may be
controlled by external gates, and a high level of control of
the qubit states has already been demonstrated experimen-
tally �38�.
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APPENDIX: THE M̂ MATRIX

In this appendix we give the full form of the matrix M̂.
The starting point is the Lindblad equation, Eq. �2�, into
which the full form of the relaxation operators �i.e., Eqs. �5�
and �6�� has been inserted. The resulting Lindblad operator is

then cast into the linear form �27�, resulting in the 16
16 M̂
matrix, which is given by the block-diagonal form

M̂ =

M1 0 0 0

0 M2 0 0

0 0 M3 0

0 0 0 M4

� , �A1�

where the zeros stand for 4
4 zero matrices, and the Mi are
4
4 matrices given by

M1 =

−

2�0

1 + e�B+J�/T
e�B+J�/T�0

1 + e�B+J�/T
e�B+J�/T�0

1 + e�B+J�/T 0

�0

1 + e�B+J�/T 	 1

1 + e�B+J�/T − 2 +
1

1 + e�J−B�/T��0 0
eB/T�0

eB/T + eJ/T

�0

1 + e�B+J�/T 0 	 1

1 + e�B+J�/T − 2 +
1

1 + e�J−B�/T��0
eB/T�0

eB/T + eJ/T

0
eJ/T�0

eB/T + eJ/T
eJ/T�0

eB/T + eJ/T −
2eB/T�0

eB/T + eJ/T

� ,

M2 =

�1 − B − J 0 0

B + J �1 0 0

0 0 �1 − B − J

0 0 B + J �1

� ,
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M3 =

�2 − 2B 0 0

2B �2 0 0

0 0 �3 0

0 0 0 �3

� ,

M4 =

�4 J − B 0 0

B − J �4 0 0

0 0 �4 J − B

0 0 B − J �4

� , �A2�

with the parameters �i given by

�1 =

sinh�B/T� − 2�cosh�B/T� + cosh�J/T����0

2�cosh�B/T� + cosh�J/T��
,

�2 = 	−
1

1 + e�B+J�/T −
1

1 + e�J−B�/T��0,

�3 = 	 1

1 + e�B+J�/T − 1 −
1

1 + e�B−J�/T��0,

�4 = −
2�cosh�B/T� + cosh�J/T�� + sinh�B/T�

2�cosh�B/T� + cosh�J/T��
. �A3�
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