The Scientific Method (PHYS 264)

Prof. Massimiliano Di Ventra Department of Physics, University of California, San Diego

Overview

What information can Science provide of the natural world, and how do we, scientists, go about investigating it?

This class will address all concepts pertaining to the scientific method: objective reality and approximate description of natural phenomena; the role of the observer; the difference between objective facts, hypotheses and theory; the meaning of "falsifiability"; the "absence of democracy" in the pursuit of scientific truths, and the fundamental and *inalienable* role of experimental evidence in scientific knowledge.

Rather than a class on epistemology, it will convey the scientific methodology from a point of view of a practitioner. It will also clarify the limits of Science and the errors we make when abusing its method in contexts that are not scientific.

Several examples, taken from well-known and easy-to-follow scientific facts, will be used to elucidate all concepts. The lectures will be structured around open discussions with active students' participation to stimulate critical thinking.

Topics

- The logical foundations of Science
- Material world and objective reality
- Natural phenomena and the primacy of experiment
- The role of human faith in Science
- Approximate and limited description of natural phenomena
- Hypothesis
- Theory
- Competing theories
- Can one theory be "derived" from another?
- Verifying or falsifying? And what?
- Consensus in Science? What is that?
- The "What" and "Why" questions
- "Scientism": abusing the scientific method

Suggested reading:

- M. Di Ventra, The Scientific Method: Reflections from a Practitioner (Oxford University Press, 2018)
- Pierre Duhem, Essays in the History and Philosophy of Science (Hackett Pub. Co. 1996)
- Thomas Kuhn, *The Structure of Scientific Revolutions*, (U. Chicago Press, 1962)