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Clarifications and corrections

Chapter 1

• In the sentence after Eq. (1.2) the term “over the ensemble of particles”

means “over an ensemble of identical copies of the system, all prepared

with similar initial conditions”.

• In footnote 5 the relation |M| ∝ χ|B| should be |M| = χ|H|, with H the

magnetic field.

• In Eq. (1.35) part of the symbol of absolute value is missing from the last

equality. The correct equation should be

P (Î → I0|t) = |cI0(t)|2 = |⟨ΨI0 |Ψ(t)⟩|2.

• I have derived Eq. (1.49) assuming the state vectors to be orthogonal.

However, this condition is not necessary to define the statistical operator

(1.48). This is the reason why there could be equivalent representations of

the statistical operator with different macro-states (see Footnote 31 and

Exercise 1.3).

• In Sec. 1.4.5 (Open quantum systems) the identity operators in Eq. (1.64)

are interchanged. That equation should read

Ĥ = Ĥe ⊗ 1̂ph + 1̂e ⊗ Ĥph + Ĥe−ph

• In Sec. 1.4.5 (Open quantum systems), when I refer to Eq. (1.74), and

state “for an arbitrary L Eq. (1.73) does not necessarily admit a station-

ary solution”, I am referring to L operators that do depend on time. If

this is the case, the corresponding equations of motion for the statistical

operator are called quantum master equations (see Appendix C). If L does

not depend on time (and the Hilbert space is finite) then there is (at least)

one stationary solution.

Chapter 2

• In the last paragraph of page 41, the sentence “This implies that on

average (over all particles)” should be understood as “This implies that

on average (over an ensemble of identical copies of the system)”.
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• The discussion in Sec. 2.3.2 (The use of Density-Functional Theory in

the Kubo approach) may be a bit cryptic for those not so much familiar

with density-functional theory. The interested reader can consult either

the references in that section or, for a more extensive account and the re-

lation to the Landauer approach, the paper G. Vignale and M. Di Ventra,

“Incompleteness of the Landauer formula for electronic transport”, Phys.

Rev. B 79, 014201 (2009), where these concepts are explained in some

detail with specific reference to the transport problem.

• Eq. (2.97) is not correctly written in terms of the density. The correct

Hartree energy is

W ≃ e2

2

∫
dr′

∫
dr

n(r)n(r′)

|r− r′|

• Note that in order to make the distribution function f dimensionless one

needs to divide dri dpi in Eqs. (2.119)-(2.123) by h3, where h is the

Planck’s constant. For instance Eq. (2.119) should read

dΩ =
1

N !

N∏
i=1

dri dpi

h3
.

For the same reason, the infinitesimal element dpi should be replaced by

dpi/h
3 in all equations of Sec. 2.7

• In footnote 55 by “elastic collisions” I mean collisions that conserve single-

particle energy.

• Note that the first equality in Eq. (2.142) does not require the statistical

operator ρ̂ to be diagonal in a given representation. However, the second

equality does require ρ̂ to be diagonal in the states {|Ψi⟩}.
• On page 87 after Eq. (2.146) it is stated that from this equation one can

derive the second law of thermodynamics. This statement is incorrect.

What one can show is that the canonical entropy can be related to the

heat exchanged by the system with the environment in a quasi-static

transformation (Exercise 2.14).

• Note that unlike what is stated before Eq. (2.143) the states {|Ψi⟩} do

not need to form a complete set in the Hilbert space, but I have assumed

them to diagonalize the statistical operator.

• In Eq. (2.147) there is no comma between H and [ρ, ln ρ] in the second

equality. That equation should read

dS[ρ̂]

dt
=

i kB
~

Tr{[Ĥ, ρ̂] ln ρ̂} =
i kB
~

Tr{Ĥ[ρ̂, ln ρ̂]} = 0.
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• In Exercise 2.8, Eq. (E2.7), there should be no t′. That equation should

read

χAB(ω) =

∫
dteiωtχAB(t).

• In Exercise 2.14, in Eq. (E2.19) the symbol dW should be δW , namely

that equation should be

δW =
∑
β

Fβ dχβ.

Same for the symbol dQ which should be δQ, so that Eq. (E2.21) should

read

dS[ρ̂eqC ] =
δQ

θ
≡ Tr{dρ̂Ĥ}

θ
, ∀ dβ, dχβ.

This is not a minor point, because neither δW nor δQ are exact differen-

tials. Only the entropy variation dS[ρ̂eqC ] = δQ/θ is an exact differential,

with θ the integrating factor.

• In the same Exercise 2.14 it is also stated that “Eq. (E2.21) is the sec-

ond law of thermodynamics”. This is clearly not generally correct. The

equality (E2.21) is only one aspect of the second law for quasi-static trans-

formations. The second law states that for arbitrary transformations of an

isolated system from one equilibrium state to another the entropy cannot

decrease.

Chapter 3

• Before Eq. (3.96), the word future should be past.

• In order to obtain Eq. (3.218) one multiplies by uf (r⊥R)u
∗
i (r⊥L) e

−i(kixL−kfxR)

without the transmission amplitude.

• Eq. (3.219) should be

G+(r⊥R, r⊥L, E) ≡ G+(r⊥R, xR; r⊥L, xL;E) e−i(kixL−kfxR)

• On page 176 the symbols λi should be ti.

• In the sentence after Eq. (3.310) µ3 of probe 3 is a function of µ1, µ2, T31
and T32 not µ3 as it is currently written.

• In footnote 65 the definition of magnetoresistance percentage should be

R =
R↑↓ −R↑↑

R↑↓
.
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• In Eq. (3.319) there are some c (speed of light) factors missing. That

equation should read

VB,s(r, r
′) =

ie~
2mc

[A(r) +A(r′)] · ∇δ(r− r′) +
e2

2mc2
A2(r) δ(r− r′)

+ µB g0 sB(r) δ(r− r′)

• On page 197, in the section “Local resistivity spin dipoles”, when I discuss

“spin-dependent transport” I mean here in the presence of spin-orbit in-

teraction. The symbols s = 1/2 and s = −1/2 in Fig. 3.22 are then meant

only as labels and not as good quantum numbers. Also the shape and ori-

entation of the spin dipoles are not meant to represent an exact scattering

case. They may vary according to the junction charge-scattering potential

and type of spin-scattering potential (see Mal’shukov and Chu, 2006).

• In Exercise 3.22 the functional A[χ] is proportional to the scattering am-

plitude (when |χ⟩ = c|Ψ⟩) at all energies and potential strengths not just

in the limits reported.

Chapter 4

• In Section 4.5 (Coulomb blockade) at the end of the discussion of the “Or-

thodox picture of Coulomb blockade”, the final sentence should read the

total tunneling resistance must be much larger than the quantum resistance

(per spin), R ≫ h/e2, not “smaller” as it is now reported.

Chapter 5

• On page 259 before the last paragraph I write “Both have a power spec-

trum that is independent of frequency (white noise)”. That statement

should be “Thermal noise has a power spectrum that is independent of

frequency (white noise)”.

• Eq. (5.12) has a typo in the definition of the current autocorrelation

function. That equation should read

S(t′) = lim
Tp→∞

1

Tp

∫ Tp/2

−Tp/2
∆I(t)∆I(t+ t′)dt = ⟨∆I(0)∆I(t′)⟩,

• After Eq. (5.14) the sentence “Before replacing 5.10 into” should be

“Before replacing 5.13 into”.

• In Eq. (5.49) the sum is over m and should thus read as

G(k) =

∞∑
m=0

(ik)m

m!

Sm

em
,
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• Same for Eq. (5.50)

lnG(k) =

∞∑
m=1

(ik)m

m!
⟨⟨nm(t)⟩⟩,

Chapter 6

• In Eq. (6.3) m should be Mi.

• The index i of the operators in Eq. (6.14) should be j. That equation

should read 
b̂j |Nj⟩ =

√
Nj |Nj − 1⟩

b̂†j |Nj⟩ =
√

Nj + 1 |Nj + 1⟩
b̂j |0j⟩ = 0 ,

• Footnote 13 should read “This energy may contain, in principle, an ex-

tremely large number of terms.”

• In Eqs. (6.52), (6.53) and (6.56), the argument inside the operators Dj

should be ~ω, not E.

• In Eq. (6.75) the steady state condition has the wrong sign. It should

read

Pv = Ioutth − Iinth =⇒ θeff = (θ40 + θ4v)
1/4, finite background θ

• Unlike what is stated in the text, in order to evaluate Eq. (6.97) there is

no need to expand the transmission coefficient to first order. Nonetheless,

we need to assume that we are away from electronic resonances otherwise

we may need to retain orders higher than the first in the Sommerfeld

expansion.

• In footnote 40 of Section 6.4 (Thermopower), the function L(E) is

L(E) =
∂ [T (E) (E − µ̄)]

∂E
,

which arises from the integration by parts∫ +∞

−∞
dE

∂ [T (E)(E − µ̄)]

∂E
f(E) =

∫ +∞

−∞
dE T (E) (E − µ̄)

(
−∂f(E)

∂E

)
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Chapter 7

In Sec. 7.5 after the initial-state maximum entropy principle when refer-

ring to Prigogine’s principle the terminology “close to equilibrium” really

means “close to local (in space) thermodynamic equilibrium”. This implies

that if n forces Xj (j = 1, . . . , n) act on the system producing the n fluxes

Jj , there exists a linear relation of the type

Ji =
∑
k

LikXk

where the linear-response coefficients Lik satisfy the Onsager’s relations

Lik = Lki,

a direct consequence of the micro-reversibility of the Hamilton equations of

motion (2.127). In the same local thermodynamic equilibrium assumption,

the local entropy production rate σ can be written as

σ =
∑
k

XkJk =
∑
ki

LikXiXk,

from which Prigogine’s principle can be proved.

Note, however, that Prigogine’s principle has a meaning only when two or

more forces act on the system. In the case of a two-terminal current device

in the linear regime, the only force acting on the system is the bias. The

only corresponding flux is the current, so that Prigogine’s principle does not

apply.

Chapter 8

• After Eq. (8.30) it is written that the bulk viscosity of liquids is generally

much smaller than their shear viscosity. This is true for the electron liquid

but not for all ordinary liquids.

• In Eq. (8.65) the steady state condition has the wrong sign. It should

read

Pe = Ioutth − Iinth =⇒ θeff = (θ20 + θ2e)
1/2, finite background θ

• In the discussion in Sec. 8.6.1 (Electron heat conduction), I have implicitly

neglected a term (µL+µR) T (E) [fL(E, θR)−fR(E, θL)]/2 in the integral

of Eq. (8.66). This term, which is directly related to the variation of

number of particles, is negligible in the limit of zero bias and for T (E)

independent of energy, which is what I assume in that section.



7

• In Eq. (8.72) the entropy and velocity field in the first term on the left-

hand side depend on time. That equation reads

σij(r, t)∂jvi(r, t)+∇· [k(r, t)∇θe(r, t)] = n cP

(
∂θe
∂t

+ v(r, t) · ∇θe(r, t)

)
.

Appendix A

• There is a typo in Eq. (A.30): Ni should be Nj . That equation should

read

b̂j |N1, . . . , Nj , . . .⟩ =
√

Nj |N1, . . . , Nj − 1, . . .⟩.

Appendix C

• In Eqs. (C.18) and (C.19), I have chosen t0 = 0.

• Note that it is thanks to the choice of the particular projector (C.10) that

Eq. (C.18) can be closed. Indeed, this equation generally has the extra

term

et(1−P )Ltot ρ̂2(t0)

namely Eq. (C.18) should be

ρ̂2(t) = et(1−P )Ltot ρ̂2(t0) + α

∫ t

t0

dτ eτ(1−P )LtotLintρ̂1(t− τ).

However, from (C.11) we get ρ̂2(t0) = 0 (which is equivalent to P ρ̂tot(t0) =

ρ̂tot(t0)).

• Note that Eq. (C.22) has a meaning when acting on ρ̂S .

• In Eq. (C.28) the coefficient 2~ should be ~2.
• Referring to Sec. C.3, note that for a time-independent Lindblad operator

(namely a time-independent system Hamiltonian and bath operators) and

for a finite Hilbert space there is (at least) one stationary solution to Eq.

(C.30).

Appendix K

• In Eq. (K.4) there should not be the symbol P of Cauchy principal value.

That equation should read

µ(ω → ∞) ≡ µ∞ =
2

π

∫ ∞

0
dω′ η(ω′) ≃ η(ω → 0)

τ


